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ABSTRACT 

The proportional hazards (PH) model, proposed by Cox (1972), is one of the most 

popular survival models for analyzing time-to-event data. To use the PH model properly, 

one must examine whether the data satisfy the PH assumption. An alternative model 

should be suggested if the PH assumption is invalid. The main purpose of this thesis is to 

examine the performance of five existing methods for assessing the PH assumption. 

Through extensive simulations, the powers of five different existing methods are 

compared; these methods include the likelihood ratio test, the Schoenfeld residuals test, 

the scaled Schoenfeld residuals test, Lin et al. (2006) score test, and the martingale-based 

residuals test. Results from SAS and R show that the power will vary depending on the 

form of hazard. For the hazard considered here with a clear jump point at which the PH 

assumption is violated, the power depends on the time to the violation of proportional 

hazards, the direction and magnitude of the hazard’s change, and the censoring rate of the 

data. Leukemia remission and Stanford heart transplant data were used to illustrate testing 

of the five methods.
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CHAPTER 1 INTRODUCTION 

 As an important tool in statistical data analysis, survival analysis is a major field 

in which the association is analyzed between the time to an event and potential risk 

factors. Time is usually defined as the time to an event of interest. The event can be 

defined as, for example, death or date of diagnosis in public health, machine failure in 

engineering, or account closing in business. The particular feature of survival data is that 

time may not be observed completely. That is, some patients may be censored. We can 

classify censoring into three categories: right censoring, left censoring, and interval 

censoring. Right censoring means that the participant does not experience the event of 

interest, which happens due to loss to follow-up, withdrawal from the study of the 

participant, or the end of the study. That is, the true event time is greater than the time 

under which the subject was in the study (assuming all subjects eventually experience the 

event). Left censoring means that the event of interest occurred prior to when the subject 

enters the study. That is, the true survival time is less than or equal to the first observed 

time. Interval censoring means that the event had not happened at the previous visit time, 

but had occurred by the current visit time. That is, the true event time happened within a 
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known time interval. In this thesis, we focus mainly on data with right censoring. In 

contrast to traditional regression analysis, survival analysis is conducted to describe the 

probability that an event does not happen. Thus, we list the definitions of the hazard 

function and the survival function below. 

Let us denote 𝑇 as the subject’s event time. The hazard function, which is 

denoted by h (𝑡), represents the instantaneous failure rate given that an individual has 

survived up to time 𝑡; this can be written as:  

ℎ(𝑡) = 𝑙𝑖𝑚
∆𝑡→0

𝑝(𝑡≤𝑇<𝑡+∆𝑡|𝑇≥𝑡)

∆𝑡
, 

where ∆𝑡 denotes an interval of time. 

The survival function, denoted as S (𝑡), is used to describe the probability that a 

person can survive longer than the specified time 𝑡. Theoretically, as time 𝑡 ranges from 

0 to infinity, the survival probability decreases from 1 to 0. The relationship between the 

survival function and the hazard function is expressed as:  

𝑆(𝑡) = exp [−∫ ℎ(𝑢)𝑑(𝑢)
𝑡

0

] 

ℎ(𝑡) =
𝑑𝑆(𝑡) 𝑑𝑡⁄

𝑆(𝑡)
 

Note, 𝐻(𝑡) = ∫ ℎ(𝑢)𝑑(𝑢)
𝑡

0
 denotes the cumulative hazard risk. There are many 

parametric distributions that can be used to describe the survival/hazard function, 

including the exponential distribution, the Weibull distribution, and the lognormal 

distribution. The maximum likelihood method can be applied to obtain estimates. 
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Additionally, nonparametric approaches can be used to estimate the survival probability, 

such as the Kaplan–Meier approach and the Nelson–Aalen approach ([1], [2]). 

For a brief introduction of the Kaplan–Meier (KM) method, suppose there are 𝑛 

observations denoted as 𝑡1, 𝑡2, ⋯ , 𝑡𝑛, and the sorted observation times are denoted as 𝑡(𝑖), 

the estimated survival probability at time 𝑡 based on the KM approach is given as: 

𝑆̂𝑘𝑚(t) = ∏ Pr̂n−1
i=1 (T> t(i)| T≥ t(i)) 

The KM estimator can be used to compare survival probability between two 

different groups based on the log-rank test. 

1.1 PH model and PH model assumption 

In practice, most researchers want to determine the potential risk factors of an 

event. Therefore, these potential risk factors should be incorporated into the survival 

model. The proportional hazards (PH) model, proposed by Cox in 1972 [3], is one of the 

most popular survival models in practice. Let us assume that X= (𝑋1, ⋯𝑋𝑝) is a vector of 

covariates of interest, and 𝛽 = (𝛽1,⋯ , 𝛽𝑝) is a vector of coefficients. The PH model can 

be written as: 

h (t, X) = ℎ0(𝑡)×𝑒∑ 𝛽𝑖𝑋𝑖
𝑝
𝑖=1  

The interpretation of 𝛽 can be explained by the log hazard ratio. For example, if 

we want to calculate the hazard ratio of two patients with one variable of interest, Z, and 
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we have the corresponding data 𝑧1, 𝑧2 and coefficient 𝛽′, the hazard ratio for the two 

patients of the variable Z is: 

HR =
ℎ0(𝑡)𝛽′𝑒  𝑧1

ℎ0(𝑡)𝑒𝛽′𝑒 𝑧2=𝑒𝛽′( 𝑧1− 𝑧2) 

If Z is a continuous variable, we can see that with one unit change in Z, the hazard 

ratio will change 𝑒𝛽′
, and if Z is a categorical variable, if we compare 𝑧1 to 𝑧2, the 

hazard ratio is 𝑒𝛽′
.  

One of the reasons the PH model is popular in literature is because it can be 

estimated semi-parametrically. That is, it is not necessary to assume the distribution of 

the baseline hazard function, and the coefficient estimates can be obtained through the 

partial likelihood function. Assume the observation for the ith subject is denoted as 

𝑡𝑖, 𝛿𝑖, 𝑋𝑖𝑖 = (𝑥𝑖1,⋯ , 𝑥𝑖𝑝), where 𝛿𝑖 is the censoring indicator, with 1 as event and 0 as 

censoring. The partial likelihood is denoted as: 

L (𝛽) = ∏
exp (𝛽 𝑥𝑖𝑖)

∑ exp (𝛽𝑋𝑗𝑖)𝑗𝜖𝑅(𝑡(𝑖))
i:δi =1  

𝑅(𝑡(i)) is the risk set at time 𝑡(i), which includes all subjects who are alive at 

time 𝑡(i). 

The first derivative of the logarithm of partial likelihood is: 

𝑈(𝛽) =
𝜕𝑙(𝛽)

𝜕(𝛽)
=

∑ [i:δi=1 𝛽𝑋ii−log (∑ exp (𝛽𝑋𝑗𝑖))]𝑗𝜖𝑅(𝑡(i))

𝜕(𝛽)
=∑ [𝑋𝑖𝑖 −

∑ 𝑋𝑗𝑖exp (𝛽𝑋𝑗𝑖)𝑗𝜖𝑅(𝑡(i))

∑ exp (𝛽𝑋𝑗𝑖)𝑗𝜖𝑅(𝑡(i))
i:δi=1 ] 

The estimation can be obtained by maximizing the partial likelihood function or 

the root of its first derivative. This maximization procedure can be easily implemented 

using the Newton–Raphson method, which can be performed in existing packages in 
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most statistical software. For example, the PH model can be estimated directly in 

software such as through the “coxph” function in the survival package in R, “phreg” in 

SAS, and “stcox” in Stata. 

Once the estimate of β is obtained, the survival function can be further estimated 

non-parametrically. The estimated baseline survival function is: 

[S0̂(t)] = exp (−ℎ̂0(𝑡)), 

where ℎ̂0(𝑡) is the estimated cumulative baseline hazard function: 

ℎ̂0(𝑡) = ∑
𝛿𝑖

∑ exp (𝛽̂𝑋𝑗𝑖)𝑗𝜖𝑅(𝑡(i))i:ti ≤t
 

The prediction of survival probability for a future patient can be made based on 

the following: 

Ŝ (t, X) = [S0̂(t)]
exp(∑ 𝛽̂i

p
i=1 Xi) 

It is worthwhile to point out that even though there is no specific assumption in 

PH model estimation, there is an assumption of the model itself. As mentioned above, the 

PH model can be written in two parts: the time-dependent baseline hazard function and 

the time-independent regression component. Therefore, the hazard ratio is a 

time-independent component that leads to the main assumption of the PH model.  
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1.2 Data examples for which the PH model assumption is not satisfied 

In practice, the PH assumption may not be valid ([4], [5]). That is, the hazard ratio 

is time dependent or the model cannot be written as two distinct parts. Therefore, it is 

important and necessary to check the PH assumption before estimating and interpreting 

the results.   

First, we write the PH model in terms of the log-log survival function, given by: 

log (-log Ŝ (t)) =log (− log (Ŝ𝑘𝑚(𝑡))+∑ 𝛽𝑖𝑋𝑖
𝑛
𝑖=1  

For any covariate x, the log-log survival function will be shifted by a constant 

related to covariate x. Thus, the PH assumption can be graphically checked by plotting 

time and the non-parametrically estimated survival function (KM estimator). If the 

log-log survival curves are parallel with regards to covariate x, we can conclude that the 

covariate x satisfies the PH assumption.  

Example I: Data on leukemia remission [6] were obtained from clinical trial data 

of the drug 6-mercaptopurine (6-MP). The main purpose of this trial was to compare 

whether the use of 6-MP leads to significant improvement in remission versus the 

placebo. In total, there were 42 patients with acute leukemia in the data, separated into 

two groups of 21 patients each. This trial used matched pairs of patients at a given 

hospital matched on remission status (complete or partial) and random pairs of patients 

on treatment or placebo. Patients were followed until their leukemia returned or the study 
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ended (time measured in months). In this dataset, there are five variables: survival time, 

remission status, sex, log white blood cell count (log WBC), and treatment status. The 

censoring rate is 28.5%. 

We want to use the PH model to quantify the impact of 6-MP on remission. 

Before modeling the data, the PH assumption should be examined. For the main exposure 

(6-MP vs placebo), the log-log KM curve of treatment versus time to remission was 

plotted using SAS (top panel in Figure 1). We notice that the estimated KM curves for 

the 6-MP and placebo groups are roughly parallel, meaning that the treatment satisfies the 

PH assumption. Additionally, sex is an important confounder and needs to be justified in 

the PH model, so the log-log KM curves of sex versus time to remission were also plotted 

using SAS (bottom panel in Figure 1). The estimated survival curves for males and 

females cross, indicating that sex does not satisfy the PH assumption. 

Example II: Next we consider Stanford heart transplant data. This study lasted 

from 1967 to 1974, with the main aim of determining whether the heart transplant 

program was beneficial for end-stage heart disease patients. Patients were required to not 

have had a transplant previously and to have no other conditions that may impede 

post-transplant recovery. During the time waiting for a transplant, patients were 

monitored for improvement. After transplantation, patients received post-operative care 

and were followed as long as possible [7]. 
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Figure 1.1 Log-log KM curve of leukemia remission data for treatment (top) and sex 

(bottom) 

 

According to Crowley and Hu [8], the data contain 103 patients, 69 of whom 

received a heart transplant, and the censoring rate is 27%. The dataset also contains the 

following variables: birth date, age at acceptance into the program, date of transplant, 

waiting time, the age at transplant, and previous surgery. 
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As transplant status is the main variable of interest in the dataset, we first must 

check if it satisfies the PH assumption, shown below using log-log survival curves.  

 

 

Figure 1.2 Log-log KM curve of Stanford heart transplant data 

  

According to Figure 1.2, the two curves don’t intersect but are instead parallel. 

Form this graph, we think the transplant effect is constant over time. 

1.3 Outline of thesis 

In the examples described above, graphical tools are used to evaluate the PH 

assumption.  However, sometimes it is hard to decide “how parallel is parallel.” A 

formal test with a corresponding p-value is easier to use in practice. 
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The main purpose of this thesis is to compare five different existing statistical 

methods for checking the PH assumption with a valid testing procedure and P-value. We 

will implement all methods in both SAS and R and then compare the power of each test 

under different settings in which the PH assumption is violated. 

 In Chapter 2, we introduce the five exisiting methods: the likelihood ratio test, 

the Schoenfeld residuals test, the scaled Schoenfeld residuals test, the Lin et al. (2006) 

score test [9], and the martingale-based residuals test. We assess these methods using R 

and SAS software. Extensive simulation studies were conducted and associated results 

are presented in Chapter 3. In section 3.1, we first introduce simulation settings under the 

piecewise exponential distribution. In section 3.2, we present results for the power of 

each test under simulation settings. We also compare the results from SAS and R. In 

Chapter 4, we apply the five methods to the leukemia remission data and Stanford heart 

transplant data. Finally, we finish with a discussion and conclusions in Chapter 5. 
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CHAPTER 2 PH MODEL ASSUMPTION CHECKING METHODS 

Although a PH model with a time-dependent variable is a challenge, many 

methods have been proposed to deal with the situation. For example, Therneau and 

Grambsch [10] advised plotting a smooth curve based on Schoenfeld residuals. Fleming 

and Harrington [11] suggested a procedure that involves a function of time as a 

time-dependent variable in the PH model. 

A time-dependent variable, whose values may differ over time, can be written as 

X(t) and can be classified as an internal time-dependent covariate, for example, blood 

pressure, or an external time-dependent covariate, like air pollution. In this situation, the 

PH model may still be used, but such data don't satisfy the PH assumption. We call the 

model an extended-Cox model and the variable a time-dependent variable. The general 

formula is shown below: 

h(t,X(t))= ℎ0(𝑡) exp[∑ β𝑖X𝑖
𝑝1
𝑖=1 +∑ φ𝑗X𝑗(𝑡)]

p2
𝑗=1  

In the extended model, the exponential portion contains two components: 

time-independent covariates (Xi) and time-dependent covariates (Xj(t)). This model is 

very useful when the covariate changes over time, and it also can be used to check the PH 

assumption.
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The partial likelihood function of a time-dependent variable is: 

L(φ)=∏
∏ exp (∑ φ𝑗X𝑗𝑗(𝑡))

𝑛2
𝑗=1𝑗𝜖𝐻𝑗

∏ [∑ exp (∑ φ𝑗X𝑗𝑗(𝑡))−
𝑙

𝑚
∑ exp (∑ φ𝑗X𝑗𝑗(𝑡))

𝑛2
𝑗=1𝑗𝜖𝐻𝑘

𝑛2
𝑗=1𝑗:𝑌𝑗≥𝑡𝑘

𝑚−1
𝑙

𝑘  

Here 𝑡𝑘 is the unique time, 𝐻𝑘 is subject j with 𝑌𝑗=𝑡𝑘 and δi=1, 𝑚𝑘=|𝐻𝑘|, and 

X𝑗𝑗(𝑡) = (X𝑗1(𝑡), X𝑗2(𝑡)⋯X𝑗𝑝2(𝑡)) are the realized values of the covariates for subject j. 

The first derivative of the logarithm of the partial likelihood is: 

U(φ)=∑ (∑ X𝑗𝑗𝑗𝜖𝐻𝑘
− ∑

[∑ X𝑗𝑗(𝑡))∗exp (∑ φ𝑗X𝑗𝑗(𝑡))−
𝑙

𝑚
∑ X𝑗𝑗(𝑡))∗exp (∑ φ𝑗X𝑗𝑗(𝑡))

𝑛2
𝑗=1𝑗𝜖𝐻𝑘

𝑛2
𝑗=1𝑗:𝑌𝑗≥𝑡𝑘

[∑ exp (∑ φ𝑗X𝑗𝑗(𝑡))−
𝑙

𝑚
∑ exp (∑ φ𝑗X𝑗𝑗(𝑡))

𝑛2
𝑗=1𝑗𝜖𝐻𝑘

𝑛2
𝑗=1𝑗:𝑌𝑗≥𝑡𝑘

𝑚−1
𝑙=0𝑘  

The time-dependent coefficient model can be implemented in SAS [12] and R [13] 

through building a time-dependent covariate. SAS Institute Inc (2010) provides survival 

estimators in “proc phreg.” The survival [15] package in R provides the estimates using 

the “coxph” function. We also can check PH model assumption using SAS and R via the 

methods described below. 

In the following example, we consider a simple extended-Cox model that contains 

a fixed binary variable, X1, and a time-dependent variable, X2(t). We assume X2 may 

violate the PH assumption. In this case, 

h(t,X(t))= ℎ0(𝑡) exp(𝛽1𝑋1 + 𝛽2𝑋2(𝑡)). 

Although X2 is a time-dependent variable, it can change over time. The hazard 

ratio is constant conditional on time t [15]. Testing the PH model assumption is equal to 

testing the coefficient 𝛽2. 
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2.1 Likelihood ratio test 

In the PH model, the likelihood ratio test can be used to compare the goodness of 

fit of the null and alternative models. The likelihood ratio can be interpreted as how many 

times more likely the data are under one model than the other. The two models are nested. 

The test shows the difference between the log of the ratio of the two likelihoods. 

To test the PH assumption, Cox (1972) suggested adding a time-dependent 

variable, 𝑋2(𝑡), in the model. The form of this variable can be the product of a function 

of time, g(t), and the variable of interest. Here we consider g(t)=t, with the following 

models: 

𝐿𝑃𝐻 𝑚𝑜𝑑𝑒𝑙 is: h(t,X(t))= ℎ0(𝑡) exp(𝛽1𝑋1 + 𝛽2𝑋2) 

𝐿ext.Cox model is: h (t, X(t))= ℎ0(𝑡) exp(𝛽1𝑋1 + 𝛽2(𝑋2 ∗ 𝑡)) 

The test statistics are: 

𝐿𝑅 = −2log (𝐿𝑃𝐻 𝑚𝑜𝑑𝑒𝑙)-(−2log (𝐿ext.Cox model) ∼𝑋𝑝
2 

The test statistics follow a chi-squared distribution with p degrees of freedom, 

where p is equal to 𝑑𝑓ext.Cox model-𝑑𝑓PH model. 

In SAS, we could use the function “phreg” to fit the null and alternative models. 

In R, we use the function “coxph” to fit the null models and the “coxph” with “tt” 

function fit the alternative model [16]. The code is as follows: 

fit1<-coxph(Surv(time,event)~x1+x2,data= Leukemia)  
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fit2<-coxph(Surv(time,event)~x1+x2+tt(x2),data=leukemia,tt = function(x, t, ...) x 

* t) 

We can calculate the test statistics by extracting the value of the log likelihood 

from SAS and R and then getting the p-value. 

2.2 Schoenfeld residuals test 

Schoenfeld residuals are partial residuals that can be used to check the PH 

assumption. Schoenfeld residuals are obtained by substituting the partial likelihood 

estimator of the coefficient. The Schoenfeld residual for the ith subject on the pth 

covariate is: 

𝑟̂𝑖𝑝 = 𝛿𝑖(𝑥𝑖𝑝 − 𝑥̂̅𝑤𝑖,𝑝
)      𝑥̂̅wi,p =

∑ 𝑥𝑗𝑝𝑒
𝑥𝑗
′𝛽𝑝

𝑗∈𝑅(𝑡𝑖)

∑ 𝑒
𝑥𝑗
′𝛽𝑝

𝑗∈𝑅(𝑡𝑖)

 

The result is the covariate value of a person who gets the event at time t minus the 

expected value of the covariate and is not defined for censored individuals. Kumar [17] 

found that Schoenfeld residuals against time should be scattered randomly around zero, 

so testing time-dependent covariates is equivalent to testing a non-zero slope in a 

generalized linear regression of the Schoenfeld residuals on functions of time [18]. A 

non-zero slope is an indication of a violation of the PH assumption.  

In R, we can get Schoenfeld residuals from the “coxph” function by using the 

“residual” option, and the sample code is: 
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fit<-coxph(Surv(time,event)~x1+x2,data= Leukemia) 

rs<-residuals(fit,type="schoenfeld") 

We then perform a regression model of Schoenfeld residuals and ranked time to 

get the p-value of the slope. A p-value less than 0.05 is considered to indicate evidence 

for a non-zero slope. In SAS, the functions “phreg” and “glm” are used in this test. 

2.3 Scaled Schoenfeld residuals test 

Grambsch and Therneau (1994) [19] suggested using scaled Schoenfeld residuals 

to test time-dependent variables. Scaled Schoenfeld residuals are: 

𝑟̂𝑖𝑝
∗ = [𝑉𝑎𝑟̂(𝑟̂i1,𝑟̂i2, ⋯ 𝑟̂𝑖𝑝)]-1(𝑟̂𝑖𝑝) 

Grambsch and Therneau also suggested that E(𝑟̂𝑖𝑝
∗ ) + 𝛽̂𝑝 ≈ 𝛽𝑝(𝑡𝑖 ), so when 

assume that PH assumption is valid,  𝛽̂𝑝= 𝛽𝑝(𝑡𝑖), then E(𝑟̂𝑖𝑝
∗ ) = 0 which means that 

scaled Shoenfeld residuals are a random walk across the time scale. So the null 

hypothesis for the test is that the regression coefficient between the scaled Schoenfeld 

residuals and a function of time should be zero. Once the scaled Schoenfeld residuals are 

created, the p-value of the correlation between the scaled Schoenfeld residuals and 

ranked time can be obtained. 

In R, the “cox.zph” function can be used to test the PH assumption. The sample 

code is:  

fit<-coxph(Surv(time,event)~x1+x2,data= Leukemia) 
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zph<-cox.zph(fit,transform="rank") 

The transformation of time can be “KM,” “rank,” or “identity”. We used “rank” in 

our analysis. In SAS, we need to use “Phreg” to first get Schoenfeld residuals. Then we 

calculate the scaled Schoenfeld residuals [20] and perform the regression model of scaled 

Schoenfeld residuals against the ranked time variable.  

2.4 Lin et al. (2006) score test 

For all the tests described above, we need to specify the function of the time 

variable; however, Lin et al. (2006) propose “score-type” tests for the proportional 

hazards assumption in the PH model by using a natural smoothing spline representation 

of the corresponding non-parametric functions of time or covariate. In this test, the 

function of time doesn’t need to be defined. They consider the alternative model as: 

h(t|𝑥1, 𝑥2) = h0(𝑡)𝑒𝑥𝑝 {𝑋1𝛽 + 𝑋2𝛾(𝑡)}, 

where h0(𝑡)is baseline hazard, and 𝑋2 is a scalar covariate of interest. In our model, we 

consider 𝑋2 as a time-dependent variable, γ(.), as an arbitrary smooth function of time. 

γ(.) is infinite-dimensional, according to Lin et al., and they consider the 

smoothing spline 𝛾(𝑡) as: 

𝛾(𝑡) = ∑ 𝛿𝑘𝜑𝑘
𝑚
𝑘=1 (t)+ ∑ 𝑎𝑙𝑅(𝑡, 𝑡𝑙

0𝑟
𝑙=1 ), 

where m≥ 1is an integer, 𝑡0=(𝑡1
0, ⋯ , 𝑡𝑟

0)T is the (r×1)  vector of orderd, and 

r is the total number events. Assume 0<𝑡1
0 < ⋯ < 𝑡𝑟

0 < 1. Where 𝛿𝑘 and 𝑎𝑙 are 
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constant, {𝜑𝑘(𝑡)}𝑘=1
𝑚 is a basis for the space of (m-1)th-order polynomials, and 

R(t,s)= ∫ (𝑡 − 𝑢)+
𝑚−1(𝑠 − 𝑢)+

𝑚−1/{(𝑚 − 1)!}2𝑑𝑢
1

0
, where x+=x if x>0 and 0 

otherwise. δ=((𝛿1, ⋯𝛿𝑚,)
𝑇 , a=((𝑎1,𝑎2. ⋯𝑎𝑟,)

𝑇, 

where 𝛾 is the corresponding vector of γ(t) evaluated at each element of t0. 

𝛾 = 𝐻𝛿 + 𝜎𝑎 

H=[
𝜑1(𝑡1

0) ⋯ 𝜑𝑚(𝑡1
0)

⋮ ⋱ ⋮
𝜑𝑚(𝑡𝑟

0) ⋯ 𝜑𝑚(𝑡𝑟
0)

]        σ=[
𝑅(𝑡1

0, 𝑡1
0) ⋯ 𝑅(𝑡1

0, 𝑡𝑟
0)

⋮ ⋱ ⋮
𝑅(𝑡𝑟

0, 𝑡1
0) ⋯ 𝑅(𝑡𝑟

0, 𝑡𝑟
0)

]            

 

In our analysis, we consider m=1, then R(t,s)=min(t,s)  

 

H = [
1
⋮
1
]

𝑟×1

,    σ =

[
 
 
 
 
 
𝑡1
0 𝑡1

0 𝑡1
0

𝑡1
0 𝑡2

0 𝑡2
0

𝑡1
0 𝑡2

0 𝑡3
0

⋯
…
…

𝑡1
0

𝑡2
0

𝑡3
0

⋮ ⋮ ⋮ ⋱ ⋮
𝑡1
0 𝑡2

0 𝑡3
0 ⋯ 𝑡𝑟

0]
 
 
 
 
 

 

The test statistic is T= 𝑈𝜏 { 𝛽,̂  γ ( 𝛿 ,0)}/K~ 𝑥𝑣,1−𝑎
2  where 

K=tr{(wvw’σ)2}/tr(wvw’σ), v= tr{( wvw’σ)}2/tr{(wvw’σ)2} 

𝑈𝜏{𝛽,̂ γ(𝛿,0)}=𝑟̂𝑖𝑝′ ∗ σ * 𝑟̂𝑖𝑝 

𝑟̂𝑖𝑝 is the Schoenfeld residual corresponding to the covariate 𝑋2.  

V = [
𝑉𝛽𝛽

∗ 𝑉𝛽𝛾
∗

𝑉𝛾𝛽
∗ 𝑉𝛾𝛾

∗ ] is the inverse matrix of variance-covariance matrix of the null 

model. 

𝑉𝛾𝛾 =
1

𝑟
∗ 𝑉𝛾𝛾

∗ ∗ 𝑑𝑖𝑎𝑔(𝑟) 
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𝑉𝛾𝛽 = 𝑉𝛾𝛽
∗ ∗ 𝐻 

𝑉𝛽𝛾 = 𝑉𝛾𝛽
∗ ∗ 𝐻′ 

𝑤𝑣𝑤′ = 𝑉𝛾𝛾 − (𝑉𝛾𝛽 , 𝑉𝛾𝛾𝐻) [
𝑉𝛽𝛽

∗ 𝑉𝛽𝛾𝐻

𝐻𝑇𝑉𝛾𝛽 𝐻𝑇𝑉𝛾𝛾𝐻
]

−1

(
𝑉𝛽𝛾

𝐻𝑇𝑉𝛾𝛾
) 

The advantage of this test is that the test statistic is easy to calculate. We only 

need to fit the null model, which is easily implemented in SAS via “phreg” and in R via 

the function “coxph.” In this case, the test can eliminate the possibility of 

misspecification of the time variables. Based on the test statistic, Schoenfeld residuals 

from the null model and corresponding time values are needed. In R, the matrix 

calculation can be performed easily, and in SAS, we can do the test using the “proc iml” 

function.  

2.5 Martingale-based residuals test 

Barlow and Prentice (1993) proposed martingale-based residuals to check the PH 

model assumption. The martingale residuals can be interpreted as the differences at time t 

between the observed and expected numbers of events for the ith subject [21]. 

𝑀̂𝑖(𝑡) = 𝑁𝑖(𝑡) − ∫ 𝑌𝑖𝑖(𝑢) exp(𝛽̂′𝑋𝑖) 𝑑ℎ̂0(𝑢)
𝑡

0
    

Here 𝑀̂𝑖(𝑡) is shorthand for 𝑀̂𝑖(∞), 𝑁𝑖(𝑡) is the number of events for the ith 

subject experienced over time t, and ℎ̂0 is the cumulative baseline hazard. 
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Plotting the cumulative martingale residuals against follow-up time may check the 

violation of the PH assumption. However, these residual plots are not easily interpreted. 

Lin (1993) suggested diagnosing the Cox model by grouping the cumulative martingale 

residuals with respect to follow-up time.  

In R, we could use the package “gof” (Klaus, 2015) and code for “cumres.coxph” 

to check the PH model assumption for right-censored data using the code： 

fit.cox <- coxph(Surv(time,event) ~ z1 + z2, data= Leukemia) 

system.time(data.gof <- cumres(fit.cox,R=1000)) 

In this package, the Kolmogorov-Smirnov test statistics of the different 

coordinates of the observed score process are calculated.  

In SAS, the “assess” option under the “phreg” function can check the Cox 

regression model. The “assess” statement creates the plot, and the “resample” option 

calculates the p-value of a Kolmogorov-type supremum test based on 1,000 simulated 

residuals patterns. 

For all methods described above, a significant p-value (p<0.05) implies the 

variable of interest is a time-dependent variable, which is not constant over time, so the 

PH assumption is violated. In the following simulations, we perform the above tests to 

check the PH model assumption and calculate power under a number of different settings. 
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CHAPTER 3 SIMULATION DESIGN AND RESULTS 

We designed a simulation setting to compare the powers of the five methods of 

checking PH model assumption. All methods were performed in both R and SAS. 

3.1 Data generation 

In our simulation setting, we generate time-to-event data using an extension of the 

two-piece exponential method ([22], [23], [24]). We built the data under a simple 

condition: a binary fixed variable X1 with coefficient β1, which is constant over time, and 

a binary time-dependent variable, X2(t). We use Y1~Exp (1) as the random time at which 

the time-dependent variable switches on, and Y2~Exp (1) as the random failure time. T0 

is the time after Y1 at which the PH assumption is violated and the hazard ratio changes. 

For the variable X2, β2 is the coefficient before time Y1+T0, and β3 is the coefficient after 

time Y1+T0. So the cut-off time of variable X2 is Y1+T0, and we generate a piecewise 

exponential random time variable T as the following rate: 

ro=exp(β1X1)                if Y2<Y1 

λ   =     r1(t)=exp(β1X1+β2X2(t))        if Y1≤Y2<Y1+t0 

        r2(t)=exp(β1X1+β3X2(t))      if Y1+t0 ≤Y2



www.manaraa.com

21 

Here we consider X1 to be a binary time-independent variable with the 

distribution X1~binom (0.5) and X2(t) to be a binary time-dependent variable with the 

distribution X2(t)~binom(0.5).  

For the exponential density function 𝑓𝑇(𝑡) = 𝜆𝑒−𝜆𝑡, we consider that the baseline 

hazard of the PH model is 1. Based on above formula, we classify all subjects into three 

conditions: Y2<Y1 means the subjects failed before X2 (t) was switched on, Y1≤Y2<Y1+t0 

means the subjects failed between when X2(t) was switched on and before the hazard 

change, and Y1+t0≤Y2 means the subjects failed after X2(t) was switched on and after the 

PH assumption was violated. Based on the above conditions, we generate time T as: 

𝑌1

 𝑟0
                     if Y2<Y1 

T =   Y1+
𝑌2−𝑌1     

𝑟1(𝑡)  
                 if Y1≤Y2<Y1+t0r1(𝑡) 

   Y1+t0+
𝑌2−𝑌1−𝑡0𝑟1(𝑡)

𝑟2(𝑡)
           if Y1+t0r1(𝑡) ≤Y2 

After generating time T, we create the event indicated, assuming all subjects 

failed on the study first. We then generate random right-censoring time by using a 

uniform distribution, applying censoring time by replacing time T, and updating the event 

indicated.  

In our simulation studies, we consider that the PH model assumption was violated 

in three ways: the time-dependent variable effect disappeared (β3=0), reversed (β3=-β2), 

or increased (β3=2β2) at time Y1+t0. An increasing effect means β3 is doubled in 

magnitude compared to β2, representing a strong effect. We use random t0 with a uniform 
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(0,2) distribution, as well as fixed t0. The sample size is 500. The simulation setting is 

presented in Table 3.1: 

 

Table 3.1 Simulation setting 

 

β2 
0.1 0.5 1 1.75 2.5 3.5 4.5 

 

-0.1 -0.5 -1 -1.75 -2 -2.5 -3 -3.5 

β3 0 -β2 2β2           

t0 (years) ~Unif(0,2) 0.05 0.5 1         

n 500 

  

     

censoring 0% 20%             

 

We consider a very large range of pre-change time-dependent variable 

coefficients from -3.5 to 5. For disappeared and reversed effects, β2 has the same value. 

For increasing effects, we consider the negative value of β2 to be -1.75, as the power is 

equal to 1. Finally, the sample size is fixed at 500 with 100 repetitions. 

3.2 Simulation results 

Figure 3.1 and Figure 3.2 have the same simulation setting, where the sample size 

is 500 with random t0~uniform (0, 2) and the censoring rate is 0%. Figure 3.1 was 

generated using R, and Figure 3.2 was generated using SAS. 
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Figure 3.1 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0,0% censoring performed in R 

 

For three different situations, all tests have the lowest power when 𝛽2 is near 0, and 

the powers are all 90% or below when 𝛽2 is positive. In the disappearing effect, the 

powers of all tests are less than 35% when 𝛽2 is negative, and the Schoenfeld residuals 

test and scaled Schoenfeld residuals test have the highest power when 𝛽2 is positive. In 

the reversing effect, the powers of all the tests are below 60% when 𝛽2 is negative. For 
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positive values of 𝛽2, except for the martingale residuals test, the powers of all other 

tests are over 80% when 𝛽2 ≥ 2.5. When 𝛽2 is between 2 and 3, the power peaks. For 

 

 

Figure 3.2 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in SAS 

  

an increasing effect, all tests had high power for extreme values and when 𝛽2 ≤ −1 

except the Lin et al. (2006) score test, and the power of the other tests can reach 1. But 

the power of the Lin et al. (2006) score test decreases when 𝛽2 is 1.75. The results from 

R and SAS are similar for all tests. 

  

  

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4 5

P
o

w
er

Beta2

Disappearing effect
t0 random

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4 5

P
o

w
er

Beta2

Reversing effect 
t0 random

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4 5

P
o

w
er

Beta3 = 2Beta2

Increasing effect 
t0 random



www.manaraa.com

25 

We also perform the test with fixed t0 and consider the disappearing effect. The 

sample size is 500, with 0% censoring. All tests were performed in R and SAS with 100 

repetitions.  

 

 

Figure 3.3 Power in the scenarios of disappearing effect, by fixed t0, 0% censoring, 

performed in R 

 

Figure 3.3 and Figure 3.4 show the power of all tests with fixed t0. When t0 is 0.05 

years, the powers of all tests are very low for negative 𝛽2 and increase as 𝛽2 increases for 

positive values of 𝛽2. For t0 of 6 months, the powers of all tests for positive values of 𝛽2 
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can reach a similar maximum power as when t0 is 0.05 and show a similar pattern as when 

the lowest t0 is used. When 𝛽2 is negative, the powers of all tests are 50% or below, which 

is much higher than the power of all tests when t0 is 0.05. When t0 is 1 year, the powers of 

all tests are the highest between three different t0 when 𝛽2 is negative. 

 

 

Figure 3.4 Power in the scenarios of disappearing effect, by fixed t0, 0% censoring, 

performed in SAS 

 

When 𝛽2 ≤ −2.5, the powers of all tests are over 60%. The highest power with a 

positive 𝛽2 doesn’t differ much between t0 at 0.05 and t0 at 0.5. For all tests, the 
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Schoenfeld residuals and scaled Schoenfeld residuals tests have the highest power for 

positive 𝛽2. The likelihood ratio test has the lowest power. The results from SAS and R 

are similar. 

We also consider a sample size of 500 and 20% censoring, with random t0.

 

 

Figure 3.5 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in R 

 

Figure 3.5 and Figure 3.6Figure 3.6 show the power results for three different 

scenarios with random t0 ~ uniform(0,2). The sample size is 500 and the censoring rate is 

20%. The powers for all tests with positive 𝛽2 under the three different scenarios are 
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slightly lower than the powers using a 0% censoring rate. With the disappearing scenario, 

the powers of all tests with a 20% censoring rate are much lower than the powers of all 

tests with a 0% censoring rate for negative 𝛽2, and all powers are 15% or below. With 

the reversing effect, the powers of all tests with negative 𝛽2 are higher than those with 

the disappearing effect. 

 

 

Figure 3.6 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in SAS 
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Compared to the simulation setting with 0% censoring rate, the powers of all tests 

are still lower than the powers with a 0% censoring rate. With the increasing effect, the 

powers of all tests are over 90% when 𝛽2 ≤ 1, and the maximum power can reach 1. 

Schoenfeld residuals have the highest power. The results from SAS and R are similar.
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CHAPTER 4 REAL DATA ANALYSIS 

Because it is very common that the effect of the variable of interest on the risk of 

disease may not be constant over time, it is important to check the PH assumption before 

using the PH model to interpret the association between risk factors and the disease of 

interest. 

4.1 Leukemia remission data 

The dataset from Freireich et al. (1963) contains matched-pairs clinical trial data. 

To compare the remission-free probability in the treatment and placebo groups, patients 

were followed until their leukemia relapsed or until the end of the study. There were 21 

patients in each group. Five variables were collected for each patient: survival time (1 to 

35 weeks), status (1 as event and 0 as censoring), sex (1 as male and 0 as female), log 

white blood cell count (log WBC), and treatment status (1 as treatment and 0 as placebo). 

We would like to investigate the treatment effects by adjusting for sex. The null PH 

model is: 

h(t,X)= ℎ0(𝑡) exp(𝛽1𝑋1 + 𝛽2𝑋2),
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where 𝑋1 is treatment status, and 𝑋2 is sex. To use this model, we need to check 

whether both treatment and sex satisfy the PH assumption. The test based on the 

graphical tool in chapter one already indicates that treatment satisfies the PH assumption, 

and sex cannot satisfy the PH assumption. We conducted the test discussed earlier to 

further check whether sex satisfies the PH assumption using SAS and R. 

The following tables list the p-values of tests for checking the PH assumption for 

the PH model with treatment and sex: 

 

Table 4.1 P-values of five tests for treatment 

 

Test p-value (R) p-value (SAS) 

Likelihood ratio test 0.994 0.916 

Schoenfeld residuals test 0.915 0.918 

Scaled Schoenfeld residuals test 0.204 0.231 

Lin et al. (2006) score test 0.684 0.702 

Martingale-based residuals 0.362 0.337 

The p-values of all five tests are greater than 0.05, and we conclude that the 

treatment variable satisfies the PH assumption. 

 

Table 4.2 P-values of five tests for sex 

 

Test p-value (R) p-value (SAS) 

Likelihood ratio test 0.0017 0.0029 

Schoenfeld residuals test 0.0005 0.009 

Scaled Schoenfeld residuals test 0.0007 0.0012 

Lin et al. (2006) score test 0.0015 0.0025 

Martingale-based residuals 0 0.002 
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The p-values of all five tests are less than 0.05, and we conclude that the variable 

sex cannot satisfy the PH assumption. That is, in practice, this variable cannot be adjusted 

directly in the PH model.  

4.2 Stanford heart transplant data 

The Stanford heart transplant study began in 1967 and ended in 1974. There were 

103 patients in this study, of which 69 received a heart transplant and 75 died during 

follow-up. Crowley and Hu (1977) used the time-dependent PH model to analyze the 

effect of heart transplant on patients’ survival using this data set. However, the patients’ 

transplant status changes with time. Let us assume that a patient’s transplant status is 

denoted by 1 for transplant and 0 for no transplant. That is, for patients who didn’t 

receive a transplant, the transplant statuses are 0 at all the observed times, whereas for the 

patients who did receive a transplant, their transplant statuses changed from 0 to 1 at the 

transplant time and stayed at 1 after the transplant time. Therefore, Crowley and Hu 

considered transplant status as a time-dependent variable in the PH model and concluded 

that patients with heart disease can benefit from heart transplant. Therefore, we focus on 

the model presented by Crowley and Hu as the following: 

h(t,X(t))= ℎ0(𝑡) exp(𝛽1𝑋1(𝑡) + 𝛽2𝑋2(𝑡)), 

where 𝑋1 (t) is the patient’s age at transplant (if the patient didn’t have a 

transplant, the variable is 0, otherwise the variable is the patient’s age). 𝑋2 (t) is 
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transplant status. Crowley and Hu calculated estimates of 𝛽̂1=0.057 and 𝛽̂2=-2.67. We 

obtained similar results, as shown below. 

 

Table 4.3 Analysis of maximum likelihood estimates 

 

Parameter DF Parameter 

Estimate 

Standard 

Error 

Chi-Square Pr > ChiSq Hazard 

Ratio 

𝛽̂1 1 0.05698 0.02245 6.4392 0.0112 1.059 

 𝛽̂2 1 -2.72431 1.13932 5.7177 0.0168 0.066 

 

We used a simulation study to assess the power of the five methods under similar 

conditions as the Stanford heart transplant data. Aitkin (1983) [25] used the piecewise 

method to re-analyze the Stanford heart transplant data and found that the hazard for 

patients after transplant declined after 60 days. The reversing effect is similar to the 

post-transplant condition after 60 days described by Aitkin. Therefore, we consider 

𝛽2 between 0 and 3, the cut-off point as 60 days, sample sizes of 100 with 25% censoring, 

and 1,000 replicates. 

The following figures illustrate the simulation results of the data. We consider the 

hazard reversed after 60 days, and 67% patients received a transplant. 
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Figure 4.1 Simulation results for Stanford heart transplant data performed in R (left) and 

SAS (right) 
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and 2, and the power declined when 𝛽2  ≥ 2.5. The maximum powers for all tests are 

over 90%. Among the five tests, the likelihood ratio test has the lowest power. Therefore, 

all tests are powerful if the post-transplant hazard of death decreases after 60 days.
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CHAPTER 5 DISCUSSION 

In this thesis, we investigate five different methods to check the PH assumption, 

which was violated in three situations. When the hazard decreases with time, the power 

of the tests depends on the time at which the hazard changed and the scale of the hazard 

ratio change at this point. When the hazard increases with time before the change time, 

more patients are expected to have the event of interest, and thus the power increases. If 

there is a long time period before the hazard change, patients have a chance to survive a 

long time before the hazard change. For the reversing effect, the powers of all tests are 

greater than the powers in the disappearing effect because the magnitude of the hazard 

change in the reversing effect is larger than the hazard change in the disappearing effect. 

For the increasing effect, the magnitude of the hazard change is the same as for the 

disappearing effect, but the direction is different. By comparing the results from 

increasing effect to disappearing effect, we can conclude that the power of each test also 

dependent on the direction of the hazard change. 

We conclude that the power of each test for checking the PH assumption in the 

presence of a time-dependent variable depends on the form of the hazard function. 

Specifically, for the function we considered in this thesis, the hazard function is a jump
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function with constant hazards before and after a certain time point. The power is 

affected by the direction of the change, the magnitude of the hazard change, the time at 

which the hazard function changes, and the censoring rate of data. 

For the specific simulation setting we considered, among the five methods, the 

most powerful tests were the Schoenfeld residuals test and the scale Schoenfeld residuals 

test. In most cases we considered, the likelihood ratio test had the lowest power. In the 

likelihood ratio test, the direct interaction of the time-dependent variable with time is 

considered, whereas in the Schoenfeld residuals test and the scale Schoenfeld residuals 

test, the interaction is reflected in the time-dependent variable and ranked time. The 

ranked time may be more sensitive to reflecting the time-dependent property. The score 

test (Lin et al. (2006)) doesn’t need to specify the form of time, and the power is 

comparable to that of the Schoenfeld residuals test and the scale Schoenfeld residuals test 

and does not change much when the hazard function changes. 

We investigated the power of each test in SAS and R and found only slight 

differences in the results between the two platforms.  

When the variable of interest doesn’t satisfy the PH assumption, there are several 

solutions. First, we could use the stratified Cox procedure for a signal predictor. The 

main idea here is to split the variable of interest into subgroups on the basis of a 

categorical variable [26]. Second, we could use a time-dependent PH model [5], which 
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uses interaction with a function of time for the covariate for which the assumption is not 

satisfied. 

In my thesis, I used a piecewise exponential method to generate time-to-event 

data. In the future, we could generate survival data by using other distributions, such as 

the Weibull distribution, and examine the performance of the five methods for checking 

the PH assumption. 
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APPENDIX A SIMULATION RESULTS 

 

Table A.1 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in R. β3=0. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals 

test 

Schoenfeld 

residuals 

test 

Lin et al. 

(2006) 

score test 

Martingale-based 

residuals test 

-3.5 0.32 0.26 0.21 0.38 0.26 

-3 0.32 0.26 0.22 0.36 0.26 

-2.5 0.32 0.21 0.22 0.3 0.19 

-2 0.3 0.18 0.16 0.22 0.18 

-1.75 0.24 0.18 0.13 0.19 0.15 

-1 0.09 0.13 0.08 0.11 0.1 

-0.5 0.04 0.09 0.04 0.06 0.07 

-0.1 0.03 0.08 0.03 0.06 0.05 

0.1 0.05 0.06 0.06 0.07 0.03 

0.5 0.07 0.08 0.06 0.08 0.09 

1 0.13 0.2 0.12 0.15 0.18 

1.75 0.37 0.44 0.39 0.29 0.41 

2.5 0.48 0.64 0.62 0.56 0.45 

3.5 0.57 0.74 0.71 0.66 0.6 

4.5 0.71 0.82 0.81 0.78 0.66 
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Table A.2 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in R. β3=-β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.54 0.64 0.43 0.58 0.58 

-3 0.51 0.62 0.45 0.56 0.5 

-2.5 0.49 0.57 0.39 0.54 0.48 

-2 0.4 0.51 0.35 0.49 0.45 

-1.5 0.35 0.48 0.35 0.38 0.41 

-1 0.27 0.34 0.28 0.36 0.2 

-0.5 0.24 0.15 0.12 0.14 0.09 

-0.1 0.07 0.04 0.07 0.06 0.06 

0.1 0.07 0.03 0.07 0.06 0.06 

0.5 0.23 0.11 0.16 0.13 0.13 

1 0.55 0.56 0.5 0.57 0.49 

1.75 0.85 0.82 0.76 0.86 0.7 

2.5 0.86 0.87 0.85 0.87 0.78 

3.5 0.88 0.89 0.88 0.87 0.81 

4.5 0.85 0.89 0.88 0.82 0.81 

 

Table A.3 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in R. β3=2β2.  

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-1.75 1 1 1 0.54 1 

-1.5 1 1 1 0.89 1 

-1 0.99 0.95 0.98 0.89 0.98 

-0.5 0.51 0.38 0.35 0.34 0.37 

-0.1 0.11 0.07 0.09 0.04 0.05 

0.1 0.05 0.06 0.08 0.04 0.05 

0.5 0.07 0.07 0.03 0.07 0.07 

1 0.11 0.13 0.14 0.17 0.1 
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1.75 0.34 0.5 0.47 0.24 0.45 

2.5 0.54 0.75 0.63 0.56 0.57 

3.5 0.62 0.84 0.81 0.67 0.79 

4.5 0.64 0.84 0.82 0.68 0.78 

 

Table A.4 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in SAS. β3=0.  

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.31 0.31 0.23 0.31 0.35 

-3 0.31 0.31 0.22 0.33 0.33 

-2.5 0.3 0.3 0.21 0.3 0.34 

-2 0.3 0.3 0.16 0.31 0.28 

-1.75 0.22 0.22 0.13 0.19 0.15 

-1 0.1 0.1 0.06 0.1 0.12 

-0.5 0.05 0.05 0.03 0.05 0.05 

-0.1 0.04 0.04 0.03 0.04 0.04 

0.1 0.05 0.08 0.05 0.05 0.04 

0.5 0.07 0.08 0.08 0.07 0.06 

1 0.13 0.2 0.15 0.13 0.12 

1.75 0.35 0.38 0.48 0.35 0.36 

2.5 0.46 0.64 0.56 0.46 0.51 

3.5 0.58 0.8 0.74 0.58 0.62 

4.5 0.72 0.84 0.83 0.72 0.64 

 

Table A.5 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in SAS. β3=-β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.55 0.47 0.42 0.58 0.44 

-3 0.54 0.48 0.37 0.55 0.44 

-2.5 0.52 0.46 0.33 0.53 0.42 

-2 0.46 0.47 0.32 0.5 0.38 
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-1.5 0.41 0.46 0.26 0.46 0.35 

-1 0.23 0.3 0.24 0.27 0.18 

-0.5 0.19 0.12 0.16 0.14 0.08 

-0.1 0.12 0.08 0.07 0.09 0.05 

0.1 0.06 0.03 0.05 0.05 0.05 

0.5 0.24 0.21 0.17 0.21 0.11 

1 0.63 0.52 0.46 0.53 0.45 

1.75 0.8 0.81 0.81 0.83 0.68 

2.5 0.89 0.91 0.88 0.9 0.74 

3.5 0.9 0.9 0.88 0.89 0.78 

4.5 0.9 0.9 0.87 0.87 0.78 

 

Table A.6 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 0% censoring performed in SAS. β3=2β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-1.75 1 0.99 1 0.54 1 

-1.5 1 0.98 1 0.85 1 

-1 1 0.93 0.94 0.87 0.98 

-0.5 0.6 0.32 0.4 0.27 0.33 

-0.1 0.12 0.04 0.06 0.04 0.07 

0.1 0.06 0.03 0.03 0.05 0.05 

0.5 0.08 0.05 0.04 0.08 0.06 

1 0.12 0.17 0.12 0.18 0.1 

1.75 0.35 0.41 0.39 0.25 0.44 

2.5 0.53 0.65 0.67 0.6 0.53 

3.5 0.6 0.8 0.82 0.68 0.76 

4.5 0.62 0.84 0.8 0.7 0.76 

 

Table A.7 Power in the scenarios of disappearing effect, by fixed t0, 0% censoring, 

performed in R. β3=0. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 
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-3.5 0.09 0.11 0.11 0.07 0.1 

-3 0.06 0.07 0.1 0.08 0.07 

-2.5 0.06 0.06 0.08 0.1 0.07 

-2 0.05 0.05 0.1 0.11 0.07 

-1.5 0.04 0.05 0.09 0.04 0.05 

-1 0.02 0.06 0.06 0.04 0.05 

-0.5 0.02 0.05 0.04 0.02 0.04 

-0.1 0.03 0.04 0.04 0.02 0.05 

0.1 0.04 0.06 0.04 0.07 0.05 

0.5 0.1 0.09 0.04 0.07 0.09 

1 0.12 0.18 0.09 0.11 0.09 

1.5 0.15 0.24 0.12 0.14 0.22 

2 0.25 0.35 0.27 0.36 0.33 

2.5 0.41 0.57 0.45 0.56 0.52 

3.5 0.54 0.73 0.58 0.65 0.6 

4.5 0.7 0.83 0.82 0.78 0.69 

 

Table A.8 Power in the scenarios of disappearing effect, by fixed t0, 0% censoring, 

performed in R. β3=-β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.45 0.57 0.51 0.5 0.52 

-3 0.43 0.56 0.54 0.51 0.57 

-2.5 0.39 0.55 0.5 0.52 0.48 

-2 0.35 0.41 0.49 0.32 0.46 

-1.5 0.28 0.38 0.31 0.28 0.35 

-1 0.22 0.24 0.22 0.13 0.17 

-0.5 0.08 0.09 0.15 0.07 0.16 

-0.1 0.05 0.05 0.06 0.03 0.08 

0.1 0.08 0.11 0.07 0.02 0.09 

0.5 0.1 0.14 0.12 0.08 0.09 

1 0.16 0.27 0.26 0.15 0.14 

1.5 0.35 0.34 0.39 0.4 0.35 

2 0.42 0.58 0.49 0.5 0.39 

2.5 0.54 0.68 0.69 0.61 0.61 

3.5 0.66 0.83 0.72 0.72 0.79 
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4.5 0.68 0.86 0.85 0.73 0.79 

 

Table A.9 Power in the scenarios of disappearing effect, by fixed t0, 0% censoring, 

performed in R. β3=2β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.66 0.65 0.63 0.81 0.85 

-3 0.66 0.63 0.58 0.75 0.77 

-2.5 0.59 0.55 0.45 0.58 0.65 

-2 0.54 0.43 0.41 0.54 0.6 

-1.5 0.29 0.32 0.28 0.45 0.36 

-1 0.19 0.2 0.14 0.23 0.2 

-0.5 0.04 0.09 0.08 0.12 0.12 

-0.1 0.04 0.06 0.06 0.03 0.1 

0.1 0.06 0.05 0.05 0.01 0.01 

0.5 0.11 0.1 0.09 0.02 0.06 

1 0.13 0.15 0.16 0.12 0.1 

1.5 0.32 0.36 0.31 0.23 0.32 

2 0.39 0.52 0.53 0.32 0.38 

2.5 0.46 0.63 0.66 0.56 0.58 

3.5 0.6 0.86 0.79 0.72 0.64 

4.5 0.65 0.87 0.82 0.72 0.74 

 

Table A.10 Power in the scenarios of disappearing effect, by t0, 0% censoring, performed 

in SAS. β3=0.  

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.06 0.04 0.05 0.06 0.08 

-3 0.06 0.05 0.04 0.06 0.08 

-2.5 0.07 0.05 0.04 0.06 0.06 

-2 0.07 0.04 0.05 0.07 0.05 

-1.5 0.05 0.03 0.04 0.05 0.05 

-1 0.06 0.03 0.05 0.07 0.04 
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-0.5 0.06 0.04 0.04 0.05 0.04 

-0.1 0.04 0.03 0.04 0.03 0.05 

0.1 0.03 0.04 0.02 0.03 0.05 

0.5 0.03 0.07 0.04 0.04 0.08 

1 0.08 0.1 0.05 0.06 0.09 

1.5 0.09 0.17 0.2 0.15 0.16 

2 0.21 0.22 0.26 0.19 0.22 

2.5 0.34 0.55 0.42 0.38 0.3 

3.5 0.53 0.73 0.74 0.63 0.65 

4.5 0.65 0.82 0.85 0.7 0.66 

 

Table A.11 Power in the scenarios of disappearing effect, by t0, 0% censoring, performed 

in SAS. β3=-β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.45 0.55 0.36 0.53 0.56 

-3 0.45 0.54 0.36 0.52 0.57 

-2.5 0.43 0.52 0.35 0.48 0.45 

-2 0.37 0.42 0.33 0.34 0.4 

-1.5 0.29 0.34 0.29 0.3 0.34 

-1 0.16 0.23 0.15 0.2 0.19 

-0.5 0.09 0.15 0.05 0.07 0.12 

-0.1 0.08 0.09 0.04 0.05 0.07 

0.1 0.06 0.06 0.04 0.04 0.06 

0.5 0.15 0.09 0.05 0.05 0.09 

1 0.21 0.29 0.26 0.24 0.15 

1.5 0.3 0.42 0.4 0.32 0.34 

2 0.32 0.5 0.54 0.5 0.38 

2.5 0.52 0.64 0.66 0.57 0.62 

3.5 0.61 0.76 0.79 0.67 0.77 

4.5 0.71 0.82 0.83 0.73 0.78 

 

Table A.12 Power in the scenarios of disappearing effect, by t0, 0% censoring, performed 

in SAS. β3=2β2. 

 

β2 Power 
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Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.66 0.68 0.64 0.83 0.85 

-3 0.64 0.65 0.62 0.82 0.76 

-2.5 0.58 0.48 0.51 0.66 0.67 

-2 0.54 0.41 0.37 0.53 0.6 

-1.5 0.31 0.28 0.28 0.42 0.4 

-1 0.24 0.21 0.13 0.17 0.22 

-0.5 0.1 0.08 0.1 0.11 0.15 

-0.1 0.02 0.05 0.06 0.02 0.09 

0.1 0.06 0.04 0.05 0.03 0.02 

0.5 0.1 0.06 0.07 0.06 0.06 

1 0.16 0.19 0.14 0.2 0.14 

1.5 0.29 0.32 0.22 0.32 0.33 

2 0.43 0.51 0.52 0.5 0.4 

2.5 0.46 0.63 0.66 0.56 0.57 

3.5 0.62 0.79 0.78 0.72 0.65 

4.5 0.63 0.8 0.85 0.75 0.75 

 

Table A.13 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in R. β3=0.  

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.15 0.11 0.11 0.21 0.13 

-3 0.1 0.1 0.12 0.18 0.14 

-2.5 0.12 0.09 0.12 0.18 0.08 

-2 0.11 0.07 0.09 0.15 0.08 

-1.75 0.08 0.07 0.06 0.12 0.07 

-1 0.06 0.04 0.07 0.08 0.05 

-0.5 0.04 0.05 0.05 0.04 0.04 

-0.1 0.04 0.04 0.04 0.04 0.04 

0.1 0.06 0.05 0.04 0.06 0.05 

0.5 0.09 0.06 0.04 0.05 0.07 

1 0.13 0.14 0.1 0.12 0.17 

1.75 0.33 0.33 0.35 0.33 0.38 
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2.5 0.47 0.61 0.43 0.51 0.54 

3.5 0.53 0.73 0.6 0.68 0.7 

4.5 0.65 0.78 0.59 0.72 0.71 

4.75 0.65 0.8 0.6 0.75 0.72 

 

Table A.14 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in R. β3=-β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.33 0.3 0.35 0.31 0.2 

-3 0.34 0.29 0.36 0.3 0.2 

-2.5 0.32 0.22 0.34 0.3 0.19 

-2 0.24 0.2 0.3 0.22 0.18 

-1.5 0.22 0.16 0.24 0.25 0.17 

-1 0.14 0.11 0.14 0.17 0.12 

-0.5 0.07 0.06 0.11 0.07 0.09 

-0.1 0.07 0.04 0.03 0.04 0.08 

0.1 0.06 0.02 0.05 0.04 0.05 

0.5 0.08 0.08 0.09 0.12 0.11 

1 0.32 0.32 0.32 0.27 0.48 

1.75 0.6 0.6 0.54 0.54 0.57 

2.5 0.71 0.8 0.7 0.75 0.7 

3.5 0.75 0.83 0.71 0.76 0.71 

4.5 0.75 0.78 0.7 0.77 0.72 

 

Table A.15 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in R. β3=2β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-1.75 0.98 1 1 1 1 

-1.5 0.99 0.97 1 1 0.95 

-1 0.93 0.8 0.86 0.83 0.8 
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-0.5 0.27 0.12 0.29 0.22 0.21 

-0.1 0.03 0.06 0.05 0.04 0.07 

0.1 0.04 0.06 0.04 0.04 0.01 

0.5 0.07 0.11 0.09 0.04 0.04 

1 0.14 0.14 0.12 0.05 0.1 

1.75 0.37 0.4 0.24 0.3 0.25 

2.5 0.54 0.58 0.44 0.58 0.53 

3.5 0.6 0.75 0.65 0.65 0.54 

4.5 0.61 0.77 0.67 0.68 0.56 

 

Table A.16 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in SAS. β3=0. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-3.5 0.1 0.11 0.11 0.16 0.14 

-3 0.09 0.11 0.12 0.15 0.14 

-2.5 0.1 0.1 0.1 0.09 0.09 

-2 0.08 0.12 0.09 0.09 0.08 

-1.75 0.07 0.11 0.08 0.09 0.08 

-1 0.05 0.07 0.05 0.11 0.05 

-0.5 0.05 0.05 0.03 0.06 0.06 

-0.1 0.02 0.04 0.03 0.04 0.04 

0.1 0.08 0.04 0.03 0.02 0.04 

0.5 0.09 0.05 0.05 0.05 0.08 

1 0.16 0.11 0.11 0.15 0.16 

1.75 0.22 0.3 0.35 0.33 0.2 

2.5 0.5 0.46 0.54 0.54 0.48 

3.5 0.55 0.73 0.73 0.63 0.54 

4.5 0.6 0.83 0.79 0.64 0.61 

4.75 0.63 0.84 0.81 0.65 0.63 

 

Table A.17 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in SAS. β3=-β2. 

 

β2 
Power 

Likelihood Scaled Schoenfeld Lin et al. Martingale-base
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ratio test Schoenfeld 

residuals test 

residuals test (2006) score 

test 

d residuals test 

-3.5 0.3 0.35 0.22 0.36 0.22 

-3 0.32 0.34 0.22 0.36 0.21 

-2.5 0.32 0.33 0.23 0.36 0.21 

-2 0.19 0.34 0.21 0.33 0.2 

-1.5 0.15 0.22 0.12 0.23 0.19 

-1 0.14 0.12 0.1 0.13 0.12 

-0.5 0.12 0.11 0.04 0.12 0.09 

-0.1 0.07 0.06 0.02 0.08 0.08 

0.1 0.09 0.04 0.04 0.03 0.05 

0.5 0.13 0.1 0.1 0.19 0.11 

1 0.28 0.37 0.26 0.29 0.48 

1.75 0.66 0.56 0.48 0.65 0.57 

2.5 0.66 0.69 0.69 0.68 0.67 

3.5 0.67 0.84 0.75 0.67 0.71 

4.5 0.65 0.85 0.78 0.69 0.72 

 

Table A.18 Power in the scenarios of disappearing, increasing, and reversing effect, with 

random t0, 20% censoring performed in SAS. β3=2β2. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

-1.75 1 1 1 1 1 

-1.5 1 1 0.99 1 1 

-1 0.89 0.82 0.92 0.92 0.9 

-0.5 0.27 0.32 0.21 0.25 0.28 

-0.1 0.09 0.07 0.03 0.06 0.08 

0.1 0.06 0.06 0.04 0.06 0.01 

0.5 0.07 0.06 0.06 0.08 0.11 

1 0.08 0.09 0.14 0.11 0.24 

1.75 0.31 0.29 0.36 0.31 0.41 

2.5 0.46 0.54 0.55 0.47 0.51 

3.5 0.64 0.82 0.74 0.67 0.67 

4.5 0.65 0.81 0.76 0.66 0.7 
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Table A.19 Simulation results for Stanford heart transplant data performed in R.  

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

3 0.874 0.744 0.853 0.872 0.848 

2.75 0.983 0.95 0.97 0.99 0.978 

2.5 0.994 0.994 0.988 1 1 

1.75 0.987 0.998 0.997 0.996 0.999 

1.5 0.965 0.989 0.991 0.99 0.998 

1 0.623 0.841 0.84 0.764 0.908 

0.5 0.174 0.256 0.256 0.2 0.303 

0.1 0.064 0.064 0.041 0.039 0.057 

 

Table A.20 Simulation results for Stanford heart transplant data performed in SAS. 

 

β2 

Power 

Likelihood 

ratio test 

Scaled 

Schoenfeld 

residuals test 

Schoenfeld 

residuals test 

Lin et al. 

(2006) score 

test 

Martingale-base

d residuals test 

3 0.876 0.692 0.691 0.761 0.36 

2.75 0.993 0.872 0.903 0.994 0.876 

2.5 0.999 0.987 0.995 1 0.992 

1.75 0.99 0.981 0.994 0.998 0.985 

1.5 0.959 0.989 0.981 0.987 0.98 

1 0.633 0.796 0.806 0.761 0.793 

0.5 0.169 0.113 0.248 0.154 0.292 

0.1 0.072 0.049 0.058 0.043 0.056 
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